Bergen County Mathematics League Problem Author: Steve Conrad www.mathleague.com

Problem Editor: Dan Flegler www.mathleague.com

Brief Contest Solutions #2

2014-2015

2-1) Since $\frac{22}{7} = 3.142857...$ and T' = 3.14/59..., us see that<math>|T-22/1| = 0.00126... and |T-3.14| = 0.00159, 3.14 is not as close an approximation to Tr as is [22/7].

2-2) Tetrahedral faces are triangular. A cube face needs at least 2 tetrahedral faces, so at least 12 tetrahedral faces are needed in all. At most 3 faces of a tetrahedron are mutually orthogonal (no 2 faces can be parallel), so at most 3 faces from each tetrahedron can contribute towards these 12. We need \geq 4 tetrahedrons to provide the cube's faces. The volume of each tetrahedron is 1/6 that of the cube ($1/3 \times face area \times 1$, and face area is 1/2 a face of the cube). Together, 4 such tetrahedra are less than the volume of 1 cube, so we need \geq 5 tetrahedra. Here's how to get 5 such tetrahedral whose union is the cube: lop of tetrahedron from 4 non-adjacent corners of the cube, and you will leave I tetrahedron. More precisely, take the cube as ABCD-A'B'C'D', with ABCD horizontal and A' directly under A, B' directly under B, and so on. The 5 tetrahedra are AA'BD, CC'BD, DD'A'C', BB'A'C', and BDA'C'.

2-3) -	If x co, the left	side is greater than the right side.
	IT x=0, " " If x>0, " "	u = u = u = u = u = u = u = u = u = u =
2-4)	Now Then Future	1e [1all real numbers y].
Man	4x 3x 5x	Let 3x = the smis current earnings. We are told that 5x+Kx = \$17000, ss x = 13000
Son	3χ 2χ 4χ	and the man's current earinings ar $4x = 4(313000) = [352000]$.

 $Max\left(\frac{1}{Ax}+\frac{1}{BY}+\frac{1}{CB}\right)=Min\left(Ax+BY+Cz\right)$. The minimum in 15 each case is the altitude from the opposite vertex. Since 12 15 each case is the altitude from the opposite vertex. Since the area of $\triangle ABC = 84$, as shown, we have $\frac{1}{2}(14)(AX) = 84$, $\frac{1}{2}(15)(BY) = 84$, and $\frac{1}{2}(13)(CZ) = 84$. Solving, $AX = \frac{16F}{14}$, $BI = \frac{16F}{15}$, and $\frac{1}{4}$ C $CZ = \frac{16S}{13}$. The max sought is $\frac{14}{168} + \frac{15}{168} = \frac{174}{14}$.

© 2014 by Steven R. Conrad, www.mathleague.com