Bergen County Mathematics League

Problem Author: Jerry C. Leung www.mathleague.com Brief Contest Solutions #1

Problem Editors: Steve Conrad & Dan Flegler www.mathleague.com

2015-2016

- 1-1. Putting all nonzero terms on the left and factoring [(x 2015) (x 2017)](x 2016) = 0. This simplifies to 2(x 2016) = 0, so x = 2016.
- 1-2. Let $y_1 = 2x + 8$, $y_2 = -x + 32$, and $y_3 = -20$. Equating, y_1 and y_2 intersect at A(8, 24), y_1 and y_3 intersect at B(-14, -20), and y_2 and y_3 intersect at point C(52, -20). Using \overline{BC} as the base and the segment from A to \overline{BC} as the height, we see that the lengths of the base and height are 66 and 44 respectively. The area is $\frac{1}{2}bh = \frac{1}{2}(66)(44) = \boxed{1452}$.
- 1-3. Let $m \angle A = x$. Since $\angle A$ and $\angle B$ are complementary, $m \angle B = 90 x$. Since $\angle B$ and $\angle C$ are supplementary, $m \angle C = 180 m \angle B = 90 + x$. Since $m \angle C + m \angle D = 360$, $m \angle D = 360 m \angle C = 270 x$. Finally, $m \angle D = 8m \angle A$, so 270 x = 8x, and x = 30 or 30° .
- 1-4. Divide the problem into cases:

(inter

If the units digit is 0, then the tens digit must be 0 as well, and the hundreds digit can be any of the digits from 1 to 9, for a total of 9 numbers.

If the units digit is a prime (2, 3, 5, or 7), then the tens digit and the hundreds digit must be that prime and 1 (not necessarily in that order), for a total of 8 numbers. If the units digit is 1, then the only possible number is 111, for just 1 number. If the units digit is 4, then we have 144, 414, and 224, for a total of 3 numbers. If the units digit is 6, then we have 166, 616, 236, and 326, for a total of 4 numbers. If the units digit is 8, then we have 188, 818, 248, and 428, for a total of 4 numbers. If the units digit is 9, then we have 199, 919, and 339, for a total of 3 numbers. Altogether, the total of these is 9 + 8 + 1 + 3 + 4 + 4 = 32.

- 1-5. The sequence is 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16 It has a repeating pattern for every 8 terms. Since the remainder of 2015/8 is 7, the 2015th term is equal to the 7th term, which is 145.
- 1-6. Let *O* be the center of the circle tangent to \overline{CD} , \widehat{EF} , and \widehat{BD} . Draw a perpendicular from *O* to \overline{BC} intersecting \overline{BC} at *G*. If the length of a radius of circle *O* is *r*, then BO = 6 + r, BG = 12 - r, and OC = 12 - r. By using the Pythagorean Thm. in $\triangle BOG$ and $\triangle COG$, we get $OG^2 = (6 + r)^2 - (12 - r)^2$ and $OG^2 = (12 - r)^2 - r^2$. Equating and solving, we get $r = \overline{4.2}$.

© 2015 by Jerry C. Leung, www.mathleague.com