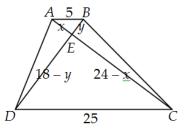


- 4-1. We want the thousands digit of *N* to be as large as possible. If the thousands digit is 9, then the leftmost digits of *N* must be 960, which contradicts the requirement that all digits are nonzero. If the thousands digit is 8, then the leftmost digits of *N* must be 848, which contradicts the requirement that all digits are distinct. If the thousands digit is 7, then the only possibility is that $N = \sqrt{248}$.
- 4-2. Let $2011p + 9 = n^2$, from which $2011p = n^2 9 = (n + 3)(n 3)$. Since 2011 and p are both primes, one of the factors at the right must be 2011 and the other must be p. If n + 3 = 2011, then n = 2008, from which n 3 = 2005. Since 2005 is divisible by 5, it is not a prime. Therefore, n 3 = 2011 and n = 2014, from which n + 3 = 2017.
- 4-3. Adding the equations, we get $x^2 + 2xy + y^2 = 121$, from which $(x + y)^2 = 121$, x + y = 11or -11. If x + y = 11, then from $x^2 + xy = x(x + y) = x(11) = 77$, we get x = 7 and y = 4. If x - y = -11, then from $x^2 + xy = x(x + y) = x(-11)$, = 77 we get x = -7 and y = -4. Therefore, all possible ordered pairs (x, y) are (7, 4), (-7, -4).
- 4-4. As shown in the diagram, AB = 5, CD = 25, BD = 18, and AC = 24. Let AE = x and BE = y, we get EC = 24 x and ED = 18 y. Since $\triangle ABE \sim \triangle CDE$, $\frac{AE}{CE} = \frac{BE}{DE} = \frac{AB}{CD'}$, from which $\frac{x}{24-x} = \frac{y}{18-y} = \frac{5}{25}$. Thus x = 4 and y = 3. Clearly, $\triangle ABE$ and $\triangle CDE$ are right triangles, so the diagonals of *ABCD* are perpendicular. The area of *ABCD* is $\frac{1}{2}(18)(24) = 216$.



- 4-5. Let $N = (2^m)(3^n)(k^6)$ for generality, from which $2N = (2^{m+1})(3^n)(k^6)$ is a perfect square and $3N = (2^m)(3^{n+1})(k^6)$ is a perfect cube. Clearly, m + 1 must be even and m must be a multiple of 3, and n must be even and n + 1 must be a multiple of 3. The smallest possible N occurs when (m, n, k) = (3, 2, 1), so $N = (2^3)(3^2)(1^6) = \boxed{72}$.
- 4-6. Converting everything to base 3, we get $\log_6 27 = \frac{\log_3 27}{\log_3 6} = \frac{3}{\log_3 6} = \frac{3}{\log_3 3} + \frac{3}{\log_3 3} + \frac{3}{\log_3 3} = \frac{3}{\log_3 3} + \frac{3}{\log_3 3} = \frac{3}{\log_3 3} + \frac{3}{\log_3 3} + \frac{3}{\log_3 3} = \frac{3}{\log_3 3} + \frac{3}{\log_3 3} = \frac{3}{\log_3 3} + \frac{3}{\log_3 3} + \frac{3}{\log_3 3} + \frac{3}{\log_3 3} = \frac{3}{\log_3 3} + \frac{3}{\log_3 3}$

© 2017 by Jerry C. Leung, www.mathleague.com