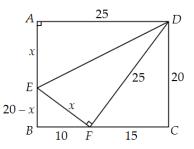


5-1. Since
$$\frac{\frac{1}{x} + \frac{1}{y}}{\frac{1}{x} - \frac{1}{y}} = \frac{\frac{x+y}{xy}}{\frac{y-x}{xy}} = \frac{x+y}{y-x} = 2017, \frac{x+y}{x-y} = -(\frac{x+y}{y-x}) = -2017.$$

- 5-2. Expanding the left, we have $x^2 + 6xy + 9y^2 + |2x 7y + 14| = 6xy + 9y^2$, which implies that $x^2 + |2x 7y + 14| = 0$. Since both terms on the left is nonnegative, we want $x^2 = |2x 7y + 14| = 0$, from which x = 0 and y = 2. Therefore, (x, y) = (0, 2).
- 5-3. Since $i^{n+1} + i^{n+2} + i^{n+3} + i^{n+4} = 0$ for every integer $n, i + i^2 + i^3 + \ldots + i^{2017} = (\sum_{k=0}^{503} i^{4k+1} + i^{4k+2} + i^{4k+3} + i^{4k+4}) + i^{2017} = 0 + i^{2017} = i^{2017} = \overline{i \text{ or } \sqrt{-1}}.$
- 5-4. As shown at the right, $\triangle AED \cong \triangle FED$, from which AD = FD = 25. Since CD = 20, by Pythagorean Theorem CF = 15and BF = BC - FC = 25 - 15 = 10. Let AE = FE = x, so EB = AB - AE = 20 - x. Applying the Pythagorean Theorem on $\triangle BEF$, $(20 - x)^2 + 10^2 = x^2$, from which x = 12.5. Therefore, The area of trapezoid BCDE is $\frac{1}{2}(7.5 + 20)(25) = 343.75$.



- 5-5. Let $x 1 = \frac{y+7}{2} = \frac{z+2}{4} = k$, from which x = k + 1, y = 2k 7, and z = 4k 2. Therefore, we have $x^2 + y^2 + z^2 = (k + 1)^2 + (2k 7)^2 + (4k 2)^2 = 21k^2 42k + 54$. Its minimum value occurs when k = 1, so the answer is 33.
- 5-6. Let [x] = n and x = n + f for which $0 \le f < 1$. We have $\frac{n}{f} = \frac{n+f}{n}$. Clearly, both n and f must be positive. Clearing fractions and moving everything to one side, we get $n^2 nf f^2 = 0$. Solving for n and taking the positive root, $n = f(\frac{1+\sqrt{5}}{2})$. Since 0 < f < 1, it follows that $n < \frac{1+\sqrt{5}}{2} < 2$. Since n is positive, n = 1. We now solve $1 = f(\frac{1+\sqrt{5}}{2})$, from which $f = \frac{2}{1+\sqrt{5}} = \frac{\sqrt{5}-1}{2}$ and $x = n + f = 1 + \frac{\sqrt{5}-1}{2} = \frac{1+\sqrt{5}}{2}$. [Note: The answer is known as the *Golden Ratio*.]