

Solutions #5 Bergen County Math League 2018–2019

- 5–1. The shortest distance is the greatest common divisor of 285 and 60, which is 15.
- 5-2. $1350 = 2 \cdot 3^3 \cdot 5^2$, so $n = 2^2 \cdot 5 = 20$.
- 5–3. Clearly $b = \pm 3$. If b = 3, then

$$(x^{2} + ax + 3)^{2} = x^{4} + 2ax^{3} + (a^{2} + 6)x^{2} + 6ax + 9 \Rightarrow a = -2.$$

If b = -3, then

$$(x^{2} + ax - 3)^{2} = x^{4} + 2ax^{3} + (a^{2} - 6)x^{2} - 6ax + 9$$

which is impossible. Therefore, a = -2 and b = 3.

5-4.	x	y	z	# possibilities
	0	$0, \pm 1, \pm 2$	$0, \pm 1, \pm 2$	$1 \cdot 5 \cdot 5 = 25$
	±1	$0,\pm 1$	$0,\pm 1,\pm 2$	$2 \cdot 3 \cdot 5 = 30$
	±1	± 2	$0,\pm 1$	$2 \cdot 2 \cdot 3 = 12$
	± 2	0	$0, \pm 1, \pm 2$	$2 \cdot 1 \cdot 5 = 10$
	± 2	±1	$0,\pm 1$	$2 \cdot 2 \cdot 4 = 12$
	± 2	± 2	0	$2 \cdot 2 \cdot 1 = 4$
				Total = 93

5-5. $\sin A + \sin B = 2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$, and $\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$. Therefore,

$$2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$
$$\Rightarrow \sin\left(\frac{A+B}{2}\right) = \cos\left(\frac{A+B}{2}\right) \quad \text{or} \quad \cos\left(\frac{A-B}{2}\right) = 0.$$

If $\sin\left(\frac{A+B}{2}\right) = \cos\left(\frac{A+B}{2}\right)$, then $\frac{A+B}{2} = \frac{\pi}{4} \Rightarrow A + B = \frac{\pi}{2}$. If $\cos\left(\frac{A-B}{2}\right) = 0$, then A - B is an odd multiple of π , but this is impossible as A and B are acute angles.

5–6. At 12:00, the hour and minute hands are both pointing at the 12. Between 12:00 and 12:44, the minute hand moves $\frac{44}{60} \cdot 360^{\circ} = 264^{\circ}$, so it is $360^{\circ} - 264^{\circ} = 96^{\circ}$ away from the 12. In the same time, the hour hand moves $\frac{1}{12}$ of this distance, or $\frac{264^{\circ}}{12} = 22^{\circ}$, so the angle between them is $96^{\circ} + 22^{\circ} = 118^{\circ}$.