

1-1. Answer: 14

Let t_n denote the n^{th} term. It is given that $t_4 + t_5 = t_6$. It follows that $t_5 = t_6 - t_4 = 6 - 4 = 2$. Then, $t_7 = t_5 + t_6 = 2 + 6 = 8$. Thus, $t_8 = t_6 + t_7 = 6 + 8 = 14$.

1-2. Answer: 14

All the bisectors of the angles of any regular polygon meet at the center of that polygon's circumscribed circle. The length of \overline{AP} is the length of a radius of the circumcircle, which is 14.

1-3. Answer: ½

There is $\frac{1}{2}$ liter remaining in the urn after the first pouring. Anytime there is $\frac{1}{2}$ liter in the first urn, and $\left(\frac{1}{n}\right)\left(\frac{1}{2}\right)$ liters is added to it, the number of liters then removed will be $\left(\frac{1}{n+1}\right)\left(\frac{n+1}{2n}\right) = \frac{1}{2n}$, the amount just added. Therefore, following the 1st pouring, there will always be $\frac{1}{2}$ liter in the first urn after a pouring is made from that urn. The 2021st pouring is made from the first urn, so the number of liters then remaining will be $\frac{1}{2}$.

1-4. Answer: 2

In an *n*-element set, there are 2^n subsets. If *n* is the number of elements in *A*, there are 2^n elements in set *B*. Therefore, *B* has 2^{2^n} subsets. Since $2^{2^n} = 16 = 2^{2^2}$, n = 2.

1-5. Answer: 0 or none

Since x, y, and z are unequal, the original expression has a sum of $\frac{x(z-y)+y(x-z)+z(y-x)}{(x-y)(y-z)(z-x)}$. This simplifies to $\frac{xz-xy+xy-yz+yz-xz}{(x-y)(y-z)(z-x)} = 0$, so the number of triples is 0 or none.

1-6. Answer: 4

Method I: If AB = a, then AP=a also. Since $\triangle ABP \sim \triangle PBC$, $BC = \frac{36}{a}$. Since BC = AD, $\frac{36}{a} = a + 5$. Consequently, $a^2 + 5a - 36 = (a - 4)(a + 9) = 0$, and AB = a = 4.

$$B \xrightarrow{\frac{30}{a}}_{A a P 5} C$$

Method II: In \triangle PDC, $6^2 = 5^2 + a^2 - 10a \cos D$ and $\cos D = \frac{5^2 + a^2 - 6^2}{10a}$. In \triangle PAB, $6^2 = a^2 + a^2 - 2a^2 \cos A$, and $\cos A = \frac{2a^2 - 6^2}{2a^2}$. Since $\angle D$ is supplementary to $\angle A$, $\cos D = -\cos A$, so $\frac{25 + a^2 - 36}{10a} = -\frac{2a^2 - 36}{2a^2}$. Clearing fractions, $a(a-4)(a^2 + 14a + 45) = 0$. This equation has one positive solution, a = 4.