

4-1. Answer: 178

To maximize the largest angle, minimize the smallest two angles. If the two smallest angles have measures of 1 and 1, the measure of the largest angle of the triangle will be 178 or 178°.

4-2. Answer: 1681

Method I: From the binomial theorem, $(\sqrt{2} - 1)^5 = (\sqrt{2})^5 - 5(\sqrt{2})^4 + 10(\sqrt{2})^3 - 10(\sqrt{2})^2 + 5\sqrt{2} - 1 = 4\sqrt{2} - 5(4) + 10(2\sqrt{2}) - 10(2) + 5\sqrt{2} - 1 = 29\sqrt{2} - 41 = \sqrt{1682} - \sqrt{1681}$, so k = 1681.

Method II: Use the table feature on your calculator, using $y = \sqrt{x+1} - \sqrt{x}$. Use "ask" for the "independent variable" and "auto" for the "dependent variable." By underestimating and overestimating, you should be able to zero in on x = 1681 in not too many tries.

4-3. **Answer:** 4042

Method I: By inspection, the sequence is a, a, 2a, 4a, 8a, ..., so for n > 2, each term is twice the preceding term. Therefore, if the 100th term is 2021, the 101st term is 4042.

Method II: We'll let S_n represent the sum of the first *n* terms of the sequence, and a_n represent its *n*th term. We're told that $a_n = S_{n-1}$, so $2021 = a_{100} = S_{99}$, so $a_{101} = a_1 + \dots + a_{99} + a_{100} = S_{99} + a_{100} = 2021 + 2021 = 4042$.

4-4. Answer: 20

In each isosceles triangle, let each vertex angle be x° and let each base angle be y° . In each triangle, $x^{\circ} + 2y^{\circ} = 180^{\circ}$. In the diagram, the 12 triangles surround the center, so $10x^{\circ} + 2y^{\circ} = 360^{\circ}$. Subtracting the first equation from the second, $9x^{\circ} = 180^{\circ}$, so $x^{\circ} = 20^{\circ}$.

4-5. Answer: 2022

The first output is $\frac{1492}{2022}$. This output is fed back in and the second output is 1492 divided by $\frac{1492}{2022}$. That output is 2022.

4-6. **Answer:** 576

Each pair (m, n) has the form (t^2, t^3) , where t is a positive integer. Since $m + n = t^2 + t^3 = t^2(t+1)$ is a square, t + 1 must also be a square. Let $t + 1 = k^2$. [Conversely, if $m = t^2$ and $n = t^3$, where $t = k^2 - 1$, then $m + n = t^2 + t^3 = (1 + t)(t^2) = k^2(k^2 - 1)^2 = (k^3 - k)^2$ is a square.] Since $m = t^2$, $t = k^2 - 1$, and m < 1000, it follows that $(k^2 - 1)^2 < 1000$. Taking square roots, $k^2 - 1 < 31.6 \dots$, so $k^2 < 32.6 \dots$. The largest such k^2 is 25, so $t + 1 = k^2 = 25$ and t = 24. Finally, $m = t^2 = 24^2 = 576$.

[Note: $m + n = 24^2 + 24^3 = 576 + 13824 = 14400 = 120^2$.]